人工智能教程(七):Scikit-learn 和训练第一个模型 在本系列的 上一篇文章 中,我们用 TensorFlow 构建了第一个神经网络,然后还通过 Keras 接触了第一个数据集。在本系列的第七篇文章中,我们将继续探索神经网络,并使用数据集来训练模型。我们还将介绍另一个强大的机器学习 Python 库 scikit-learn。不过在进入正题之前,我要介绍两个轰动性的人工智能应用:ChatGPT 和 DALL-E 2。(LCTT 译注:此文原文发表于 转载 墨客 2024-12-27 19 热度 0评论
人工智能教程(六):Keras 和第一个数据集 在本文中我们将继续学习概率论的知识。 在本系列的 上一篇文章中,我们学习了使用 Anaconda,加强了概率论的知识。在本文中我们将继续学习概率论的知识,学习使用 seaborn 和 Pandas 进行数据可视化,并进一步介绍 TensorFlow 和 Keras 的使用。 让我们从增长人工智能和机器学习的理论知识开始。众所周知人工智能、机器学习、数据科学、深度学习等是当今计算机科学的热门话题。然 转载 墨客 2024-12-24 19 热度 0评论
人工智能教程(五):Anaconda 以及更多概率论 在本系列的第五篇文章中,我们将继续介绍概率和统计中的概念。 在本系列的 前一篇文章 中,我们首先介绍了使用 TensorFlow。它是一个非常强大的开发人工智能和机器学习应用程序的库。然后我们讨论了概率论的相关知识,为我们后面的讨论打下基础。在本系列的第五篇文章中,我们将继续介绍概率和统计中的概念。 在本文中我将首先介绍 Anaconda,一个用于科学计算的 Python 发行版。它对于开发人工智 转载 墨客 2024-12-24 18 热度 0评论
人工智能教程(四):概率论入门 在本系列的 上一篇文章 中,我们进一步讨论了矩阵和线性代数,并学习了用 JupyterLab 来运行 Python 代码。在本系列的第四篇文章中,我们将开始学习 TensorFlow,这是一个非常强大的人工智能和机器学习库。我们也会简要介绍一些其它有用的库。稍后,我们将讨论概率、理论以及代码。和往常一样,我们先讨论一些能拓宽我们对人工智能的理解的话题。 到目前为止,我们只是从技术方面讨论人工智能。 转载 墨客 2024-12-23 17 热度 0评论
人工智能教程(三):更多有用的 Python 库 在本系列的 上一篇文章 中,我们回顾了人工智能的历史,然后详细地讨论了矩阵。在本系列的第三篇文章中,我们将了解更多的矩阵操作,同时再介绍几个人工智能 Python 库。 在进入主题之前,我们先讨论几个人工智能和机器学习中常用的重要术语。人工神经网络 artificial neural network(通常简称为 神经网络 neural network,NN)是机器学习和深度学习的核心。顾名思义,它 转载 墨客 2024-12-22 25 热度 0评论
人工智能教程(二):人工智能的历史以及再探矩阵 在本系列的 第一篇文章 中,我们讨论了人工智能、机器学习、深度学习、数据科学等领域的关联和区别。我们还就整个系列将使用的编程语言、工具等做出了一些艰难的选择。最后,我们还介绍了一点矩阵的知识。在本文中,我们将深入地讨论人工智能的核心——矩阵。不过在此之前,我们先来了解一下人工智能的历史。 我们为什么需要了解人工智能的历史呢?历史上曾出现过多次人工智能热潮,但在很多情况下,对人工智能潜力的巨大期望都 转载 墨客 2024-12-18 27 热度 0评论
人工智能教程(一):基础知识 如果你是关注计算机领域最新趋势的学生或从业者,你应该听说过人工智能、数据科学、机器学习、深度学习等术语。作为人工智能系列文章的第一篇,本文将解释这些术语,并搭建一个帮助初学者入门的简易教学平台。 如今,计算机科学领域的学生和从业者绝对有必要了解 人工智能 artificial intelligence 、 数据科学 data science 、 机器学习 machine learning 、 深度 转载 墨客 2024-12-18 30 热度 0评论